Efficiency of solar water disinfection photocatalized by titanium dioxide of varying particle size.
نویسندگان
چکیده
Titanium dioxide photocatalysed water disinfection is induced by the interaction of light with TiO(2), which generates highly reactive free hydroxyl radicals (OH(*)). These free radicals create lethal damage that leads to bacterial death. Normally, decreasing TiO(2) particle size increases the area of light interaction. This may possibly increase the concentration of OH(*) generated and hence increases disinfection efficiency. Moreover, decreasing the particle size increases the force of attraction between the particles and cells, which could create aggregates that may contribute to the local OH(*) concentration. In the present investigation cells of Escherichia coli were used as the test microorganism, TiO(2) as the photocatalyst and sunlight as the light source. Four different surface areas of TiO(2) particles corresponding to 10, 50, 80-100 and > or =300 m(2) g(-1) were tested at a concentration of 1 g l(-1). Disinfection efficiency increased with increasing the surface area producing a maximum between 80-100 m(2) g(-1) followed by a reduction at > or =300 m(2) g(-1). The reduction in the efficiency at this relatively high surface area was attributed to the increase in the local concentration of OH(*). This increase may be high enough to initiate radical-radical interaction that would compete with bacterial cells and reduce the chance of bacterial cell-radical interaction taking place. Moreover, the phenomenon of TiO(2) aggregation with bacterial cells plays an important role, and the extent of aggregation increases with decreasing particle size. Such aggregation could augment the concentration of OH(*) within the cell vicinity. This suggests that surface area is a key factor in determining the efficiency of disinfection, and that concentration is a vital factor.
منابع مشابه
Photocatalytic Removal of Pseudomonas Aeruginosa from Water Using Titanium Dioxide Nanoparticles and UV Irradiation
Background: Titanium dioxide (TiO2)-mediated photocatalysis has been found to be an efficient method of water treatment and is capable of degrading a wide range of organic pollutants and microbial agents with high efficiency. The microorganism Pseudomonas aeruginosa is resistant to chemicals and UV irradiation. Bacteria which are resistant to UV-induced oxidative damage of the cell membrane are...
متن کاملParticle Size Effects of TiO2 Layers on the Solar Efficiency of Dye-Sensitized Solar Cells
Large particle sizes having a strong light scattering lead to a significantly decreased surface area and small particle sizes having large surface area lack light-scattering effect. How to combine large and small particle sizes together is an interesting work for achieving higher solar efficiency. In this work, we investigate the solar performance influence of the dye-sensitized solar cells (DS...
متن کاملEnhancing the Performance of Solar Water Disinfection with Potassium Persulfat: Laboratory Study with Enterococcus faecalis
Background & Aims of the Study: The safe drinking water providing is one of the most crucial objections in these centenaries. Bacterial water contamination and high rate of morbidity and mortality is crucial health threat. Efficiency of potassium persulfat (KPS) associated solar disinfection as a novel water disinfection technology was evaluated in batch scale experiments, us...
متن کاملApplication of Multi Flux Model to Predict Optical Performance of Titanium Dioxide Nanopigments
The area of nano-pigments is a limitless field with exceptional potential applications in industry, and their application is becoming the focus of many research groups worldwide in recent years due to their outstanding and tunable properties. Titanium dioxide (TiO2) nanoparticles, on the other hand, are among the most widely used pigment particles, and the interest for utiliza...
متن کاملEffects of Solvent on the Structure and Properties of Titanium Dioxide Nanoparticles and Their Antibacterial Activity
Titanium dioxide is semiconductor metal oxide having many applications in photocatalytic activities, cosmetics and in the food industry. It exists in three major crystalline forms: anatase, rutile and brookite. The solvents play a major role in the synthesis, stability and morphology of the metal oxide nanoparticles. It affects both the phase and particle size of metal oxide. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of water and health
دوره 5 3 شماره
صفحات -
تاریخ انتشار 2007